Part Number Hot Search : 
IRF130 170M2621 815SR ASTMB633 X150FG TA0175B MC933 MC933
Product Description
Full Text Search
 

To Download AD827JN Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  connection diagrams rev. b information furnished by analog devices is believed to be accurate and reliable. however, no responsibility is assumed by analog devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. no license is granted by implication or otherwise under any patent or patent rights of analog devices. a high speed, low power dual op amp ad827 one technology way, p.o. box 9106, norwood, ma 02062-9106, u.s.a. tel: 617/329-4700 fax: 617/326-8703 features high speed 50 mhz unity gain stable operation 300 v/ m s slew rate 120 ns settling time drives unlimited capacitive loads excellent video performance 0.04% differential gain @ 4.4 mhz 0.19 8 differential phase @ 4.4 mhz good dc performance 2 mv max input offset voltage 15 m v/ 8 c input offset voltage drift available in tape and reel in accordance with eia-481a standard low power only 10 ma total supply current for both amplifiers 6 5 v to 6 15 v supplies product description the ad827 is a dual version of analog devices industry- standard ad847 op amp. like the ad847, it provides high speed, low power performance at low cost. the ad827 achieves a 300 v/ m s slew rate and 50 mhz unity-gain bandwidth while consuming only 100 mw when operating from 5 volt power supplies. performance is specified for operation using 5 v to 15 v power supplies. the ad827 offers an open-loop gain of 3,500 v/v into 500 w loads. it also features a low input voltage noise of 15 nv/ ? hz , and a low input offset voltage of 2 mv maximum. common- mode rejection ratio is a minimum of 80 db. power supply rejection ratio is maintained at better than 20 db with input frequencies as high as 1 mhz, thus minimizing noise feedthrough from switching power supplies. the ad827 is also ideal for use in demanding video applica- tions, driving coaxial cables with less than 0.04% differential gain and 0.19 differential phase errors for 643 mv p-p into a 75 w reverse terminated cable. the ad827 is also useful in multichannel, high speed data conversion systems where its fast (120 ns to 0.1%) settling time is of importance. in such applications, the ad827 serves as an input buffer for 8-bit to 10-bit a/d converters and as an output amplifier for high speed d/a converters. application highlights 1. performance is fully specified for operation using 5 v to 15 v supplies. 2. a 0.04% differential gain and 0.19 differential phase error at the 4.4 mhz color subcarrier frequency, together with its low cost, make it ideal for many video applications. 3. the ad827 can drive unlimited capacitive loads, while its 30 ma output current allows 50 w and 75 w reverse- terminated loads to be driven. 4. the ad827s 50 mhz unity-gain bandwidth makes it an ideal candidate for multistage active filters. 5. the ad827 is available in 8-pin plastic mini-dip and cerdip, 20-pin lcc, and 16-pin soic packages. chips and mil- std-883b processing are also available. 8-pin plastic (n) and cerdip (q) packages 16-pin small outline (r) package 20-pin lcc (e) package
rev. b C2C ad827Cspecifications (@ t a = +25 8 c, unless otherwise noted) ad827j ad827a/s model conditions v s min typ max min typ max units dc performance input offset voltage 1 5 v 0.5 2 0.3 2 mv t min to t max 3.5 4 mv 15 v 4 4 mv t min to t max 66mv offset voltage drift 5 v to 15 v 15 15 m v/ c input bias current 5 v to 15 v 3.3 7 3.3 7 m a t min to t max 8.2 9.5 m a input offset current 5 v to 15 v 50 300 50 300 na t min to t max 400 400 na offset current drift 5 v to 15 v 0.5 0.5 na/ c common-mode rejection ratio v cm = 2.5 v 5 v 7895 8095 db v cm = 12 v 15 v 7895 8095 db t min to t max 5 v to 15 v7575db power supply rejection ratio 5 v to 15 v7586 7586 db t min to t max 72 72 db open-loop gain v o = 2.5 v 5 v r load = 500 w 2 3.5 2 3.5 v/mv t min to t max 1 1 v/mv r load = 150 w 1.6 1.6 v/mv v out = 10 v 15 v r load = 1 k w 3 5.5 3 5.5 v/mv t min to t max 1.5 1.5 v/mv matching characteristics input offset voltage 5 v 0.4 0.2 mv crosstalk f = 5 mhz 5 v 85 85 db dynamic performance unity-gain bandwidth 5 v 35 35 mhz 15 v 50 50 mhz full power bandwidth 2 v o = 5 v p-p, r load = 500 w 5 v 12.7 12.7 mhz v o = 20 v p-p, r load = 1 k w 15 v 4.7 4.7 mhz slew rate 3 r load = 500 w 5 v 200 200 v/ m s r load = 1 k w 15 v 300 300 v/ m s settling time to 0.1% a v = C1 C2.5 v to +2.5 v 5 v 65 65 ns C5 v to +5 v 15 v 120 120 ns phase margin c load = 10 pf 15 v r load = 1 k w 50 50 degrees differential gain error f = 4.4 mhz 15 v 0.04 0.04 % differential phase error f = 4.4 mhz 15 v 0.19 0.19 degrees input voltage noise f = 10 khz 15 v 15 15 nv/ ? hz input current noise f = 10 khz 15 v 1.5 1.5 pa/ ? hz input common-mode voltage range 5 v +4.3 +4.3 v C3.4 C3.4 v 15 v +14.3 +14.3 v C13.4 C13.4 v output voltage swing r load = 500 w 5 v 3.0 3.6 3.0 3.6 v r load = 150 w 5 v 2.5 3.0 2.5 3.0 v r load = 1 k w 15 v 12 13.3 12 13.3 v r load = 500 w 15 v 10 12.2 10 12.2 v short-circuit current limit 5 v to 15 v 32 32 ma input characteristics input resistance 300 300 k w input capacitance 1.5 1.5 pf
ad827j ad827a/s model conditions v s min typ max min typ max units output resistance open loop 15 15 w power supply operating range 4.5 18 4.5 18 v quiescent current 5 v 1013 1013 ma t min to t max 16 16.5/17.5 ma 15 v 10.5 13.5 10.5 13.5 ma t min to t max 16.5 17/18 ma transistor count 92 92 notes 1 offset voltage for the ad827 is guaranteed after power is applied and the device is fully warmed up. all other specifications are measured using high speed test equip- ment, approximately 1 second after power is applied. 2 full power bandwidth = slew rate/2 p v peak . 3 gain = +1, rising edge. all min and max specifications are guaranteed. specifications subject to change without notice. absolute maximum ratings 1 supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 v internal power dissipation 2 plastic (n) package (derate at 10 mw/ c) . . . . . . . . 1.5 w cerdip (q) package (derate at 8.7 mw/ c) . . . . . . . . 1.3 w small outline (r) package (derate at 10 mw/ c) . . . 1.5 w lcc (e) package (derate at 6.7 mw/ c) . . . . . . . . . 1.0 w input common mode voltage . . . . . . . . . . . . . . . . . . . . . . v s differential input voltage . . . . . . . . . . . . . . . . . . . . . . . . . 6 v output short circuit duration 3 . . . . . . . . . . . . . . . . indefinite storage temperature range (n, r) . . . . . . . C65 c to +125 c storage temperature range (q) . . . . . . . . . C65 c to +150 c operating temperature range ad827j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 c to +70 c ad827a . . . . . . . . . . . . . . . . . . . . . . . . . . . C40 c to +85 c ad827s . . . . . . . . . . . . . . . . . . . . . . . . . . C55 c to +125 c lead temperature range (soldering to 60 sec) . . . . . . . . . . . . . . . . . . . . . . . +300 c notes 1 stresses above those listed under absolute maximum ratings may cause permanent damage to the device. this is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. exposure to absolute maximum ratings for extended periods may affect device reliability. 2 maximum internal power dissipation is specified so that t j does not exceed +175 c at an ambient temperature of +25 c. thermal characteristics: mini-dip: q ja = 100 c/watt; q jc = 33 c/ watt cerdip: q ja = 110 c/watt; q jc = 30 c/watt 16-pin small outline package: q ja = 100 c/watt 20-pin lcc: q ja = 150 c/watt; q jc = 35 c/watt 3 indefinite short circuit duration is only permissible as long as the absolute maximum power rating is not exceeded. ordering guide temperature package package model range description option AD827JN 0 c to +70 c 8-pin plastic dip n-8 ad827jr 0 c to +70 c 16-pin plastic so r-16 ad827aq C40 c to +85 c 8-pin cerdip q-8 ad827sq C55 c to +125 c 8-pin cerdip q-8 ad827sq/883b C55 c to +125 c 8-pin cerdip q-8 5962-9211701mpa C55 c to +125 c 8-pin cerdip q-8 ad827se/883b C55 c to +125 c 20-pin lcc e-20a 5962-9211701m2a C55 c to +125 c 20-pin lcc e-20a ad827jr-reel 0 c to +70 c tape & reel ad827jchips 0 c to +70 c die ad827schips C55 c to +125 c die metalization photograph contact factory for latest dimensions. dimensions shown in inches and (mm). substrate is connected to v+. ad827 rev. b C3C
ad827 rev. b C4C 20 15 10 5 0 0 5 10 15 20 supply voltage volts input common-mode range ?volts +v in ? in figure 1. input common-mode range vs. supply voltage figure 4. quiescent current vs. supply voltage 14 12 10 8 0 ?0 0 40 100 140 temperature ? c quiescent current ?ma ?0 ?0 20 60 80 120 v s = 15v v s = 5v figure 7. quiescent current vs. temperature Ctypical characteristics (@ +25 8 c & 6 15 v, unless otherwise noted) r load = 1k w 20 15 10 5 0 0 5 10 15 20 supply voltage volts output voltage swing ?volts +v out ? out figure 2. output voltage swing vs. supply voltage figure 5. input bias current vs. temperature figure 8. short-circuit current limit vs. temperature figure 3. output voltage swing vs. load resistance figure 6. closed-loop output impedance vs. frequency, gain = +1 figure 9. gain bandwidth vs. temperature
ad827 rev. b C5C figure 10. open-loop gain and phase margin vs. frequency figure 13. common-mode rejection ratio vs. frequency figure 16. harmonic distortion vs. frequency figure 11. open-loop gain vs. load resistance figure 14. large signal frequency response figure 17. input voltage noise spectral density figure 12. power supply rejection ratio vs. frequency figure 15. output swing and error vs. settling time 400 350 300 250 200 150 100 ?0 ?0 ?0 0 20 40 60 80 100 120 140 temperature ? c slew rate ?volts/? a v = +1 slew rate 10 ?90% rise fall rise fall v s = 15v v s = 5v figure 18. slew rate vs. temperature
ad827 rev. b C6C figure 19. crosstalk vs. frequency figure 20. crosstalk test circuit input protection precautions an input resistor (resistor r in of figure 21a) is recommended in circuits where the input common-mode voltage to the ad827 may exceed (on a transient basis) the positive supply voltage. this resistor provides protection for the input transistors by limiting the maximum current that can be forced into their bases. for high performance circuits, it is recommended that a second resistor (r b in figures 21a and 22a) be used to reduce bias- current errors by matching the impedance at each input. this resistor reduces the error caused by offset voltages by more than an order of magnitude. figure 21c. follower small signal pulse response figure 22c. inverter small signal pulse response figure 21b. follower large signal pulse response figure 22b. inverter large signal pulse response figure 21a. follower connection figure 22a. inverter connection
ad827 video line driver the ad827 functions very well as a low cost, high speed line driver for either terminated or unterminated cables. figure 23 shows the ad827 driving a doubly terminated cable in a follower configuration. figure 23. a video line driver the termination resistor, r t , (when equal to the cables characteristic impedance) minimizes reflections from the far end of the cable. while operating from 5 v supplies, the ad827 maintains a typical slew rate of 200 v/s, which means it can drive a 1 v, 30 mhz signal into a terminated cable. table i. video line driver performance summary over- v in * v supply c c 3 db b w shoot 0 db or 500 mv step 15 20 pf 23 mhz 4% 0 db or 500 mv step 15 15 pf 21 mhz 0% 0 db or 500 mv step 15 0 pf 13 mhz 0% 0 db or 500 mv step 5 20 pf 18 mhz 2% 0 db or 500 mv step 5 15 pf 16 mhz 0% 0 db or 500 mv step 5 0 pf 11 mhz 0% note *? db bandwidth numbers are for the 0 dbm signal input. overshoot numbers are the percent overshoot of the 1 volt step input. a back-termination resistor (r bt , also equal to the characteristic impedance of the cable) may be placed between the ad827 output and the cable input, in order to damp any reflected signals caused by a mismatch between r t and the cables characteristic impedance. this will result in a flatter frequency response, although this requires that the op amp supply 2 v to the output in order to achieve a 1 v swing at resistor r t . a high speed 3 op amp instrumentation amplifier circuit the instrumentation amplifier circuit shown in figure 24 can provide a range of gains. the chart of table ii details performance. + + + 1 3 2 2 3 6 7 6 5 ad847 ad827 ad827 0.1? 1k w 2k w 2k w 1k w 2k w 0.1? 0.1? 2k w r l 2 ?8pf 0.1? r g 4 7 2k w 8 4 trim for best settling time 1/2 1/2 3pf circuit gain = + 1 g r 2000 trim for optimum bandwidth 7 ?15 pf note: pinout shown is for minidip package ? in +v s ? s +v in +v s ? s v out figure 24. a high bandwidth three op amp instrumentation amplifier table ii. performance specifications for the three op amp instrumentation amplifier small signal bandwidth gain r g @ 1 v p-p output 1 open 16.1 mhz 2 2 k 14.7 mhz 10 226 w 4.9 mhz 100 20 w 660 khz a two-chip voltage-controlled amplifier (vca) with exponential response voltage-controlled amplifiers are often used as building blocks in automatic gain control systems. figure 25 shows a two-chip vca built using the ad827 and the ad539, a dual, current- output multiplier. as configured, the circuit has its two 16 15 14 13 12 11 10 9 1 2 3 4 5 6 7 8 control w1 z1 ch1 out base com ch2 out z2 w2 hf comp ch 1 in ch2 in input com output com ad539 0.01? + ad827 5 6 2 3 + ad827 1/2 0.1? 0.1? 4.7 w 4.7 w +5v ?v 1/2 +5v 0.1? 8 1 ?v 0.1? 2pf 2pf 4 7 v x 50 w 50 w coax line r t output input range: 10mv to 3v (55db) *pinout shown is for mini-dip package * * v in ? s +v s 8v 2 v at termination resistor, r = t out c 3 c 4 v at pin & of ad827 = out v x 2 in v 4v 2 v x 2 in v figure 25. a wide range voltage-controlled amplifier circuit
ad827 rev. b C8C c1407C24C4/90 printed in u.s.a. multipliers connected in series. they could also be placed in parallel with an increase in bandwidth and a reduction in gain. the gain of the circuit is controlled by v x , which can range from 0 to 3 v dc. measurements show that this circuit easily supplies 2 v p-p into a 100 w load while operating from 5 v supplies. the overall bandwidth of the circuit is approximately 7 mhz with 0.5 db of peaking. each half of the ad827 serves as an i/v converter and converts the output current of one of the two multipliers in the ad539 into an output voltage. each of the ad539s two multipliers contains two internal 6 k w feedback resistors; one is connected between the ch1 output and z1, the other between the ch1 output and w1. likewise, in the ch2 multiplier, one of the feedback resistors is connected between ch2 and z2 and the other is connected between ch2 and z2. in figure 25, z1 and w1 are tied together, as are z2 and w2, providing a 3 k w feedback resistor for the op amp. the 2 pf capacitors connected between the ad539s w1 and ch1 and w2 and ch2 pins are in parallel with the feedback resistors and thus reduce peaking in the vcas frequency response. increasing the values of c3 and c4 can further reduce the peaking at the expense of reduced bandwidth. the 1.25 ma full-scale output current of the ad539 and the 3 k w feedback resistor set the full-scale output voltage of each multiplier at 3.25 v p-p. current limiting in the ad827 (typically 30 ma) limits the out- put voltage in this application to about 3 v p-p across a 100 w load. driving a 50 w reverse-terminated load divides this value by two, limiting the maximum signal delivered to a 50 w load to about 1.5 v p-p, which suffices for video signal levels. the dynamic range of this circuit is approximately 55 db and is primarily limited by feedthrough at low input levels and by the maximum output voltage at high levels. guidelines for grounding and bypassing when designing practical high frequency circuits using the ad827, some special precautions are in order. both short interconnection leads and a large ground plane are needed whenever possible to provide low resistance, low inductance circuit paths. one should remember to minimize the effects of capacitive coupling between circuits. furthermore, ic sockets should be avoided. feedback resistors should be of a low enough value that the time constant formed with stray circuit capacitances at the amplifier summing junction will not limit circuit performance. as a rule of thumb, use feedback resistor values that are less than 5 k w . if a larger resistor value is necessary, a small (<10 pf) feedback capacitor in parallel with the feedback resistor may be used. the use of 0.1 m f ceramic disc capacitors is recommended for bypassing the op amps power supply leads. outline dimensions dimensions shown in inches and (mm). 8-pin mini-dip (n) package 16-pin soic (r) package 8-pin cerdip (q) package 20-terminal leadless ceramic chip carrier (e-20a)


▲Up To Search▲   

 
Price & Availability of AD827JN

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X